Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(5)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871594

RESUMO

In this work, the effects of hydrogen (H) and oxygen (O) adsorption on the electronic and magnetic properties of graphene-like boron arsenide (BAs) monolayer are investigated using first-principles calculations. Pristine monolayer is a non-magnetic two-dimensional (2D) material, exhibiting direct gap semiconductor character with band gap of 0.75 (1.18) eV as calculated by generalized gradient approximation with Perdew-Burke-Ernzerhof (HSE06) functional. Four high-symmetry adsorption sites are considered, including on-top of B atom (TB), on-top of As atom (TAs), on-top of hollow site (TH), and on-top of bridge site (Tbridge). Using the criterion of adsorption energy, it is found thatTBandTbridgesites are favorable adsorption sites for H and O adatom, respectively. The analysis of electronic interactions indicate the charge transfer from host BAs monolayer to both adatoms. H adsorption conducts to the emergence of magnetic semiconductor nature in BAs monolayer with a total magnetic moment of 1.00 µB. Herein, the magnetism is originated mainly from H adatom and its neighbor As atoms. In contrast, the non-magnetic nature of BAs monolayer is preserved upon absorbing O atoms. In this case, the energy gap exhibits a slight reduction of 4%. Further, the effects of adatom coverage are also analyzed. The presented results suggest an effective modification of ground state electronic properties, as well as induction of new feature-rich properties to make new multifunctional 2D materials from non-magnetic BAs monolayer.

2.
Nanoscale Adv ; 5(20): 5476-5486, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37822911

RESUMO

In the present work, we report on a theoretical-computational study of the growth mechanism of the TiO2-Graphene nanohybrid by atomic layer deposition. Hydroxyl groups (OH) are anchoring sites for interacting with the main ALD titanium precursors (Tetrakis (dimethylamino) Titanium, Titanium Tetrachloride, and Titanium Isopropoxide). Results demonstrate that the chemical nature of the precursor directly affects the reaction mechanism in each ALD growth step. Tetrakis(dimethylamino)titanium is the precursor that presents a higher affinity (lower energy barriers for the reaction) to hydroxylated graphene in the growth process. A complete reaction mechanism for each precursor was proposed. The differences between precursors were discussed through the non-covalent interactions index. Finally, the water molecules help reduce the energy barriers and consequently favor the formation of the TiO2-graphene nanohybrid.

3.
RSC Adv ; 13(26): 17968-17977, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323461

RESUMO

Two-dimensional (2D) heterostructures have attracted a lot of attention due to their novel properties induced by the synergistic effects of the constituent building blocks. In this work, new lateral heterostructures (LHSs) formed by stitching germanene and AsSb monolayers are investigated. First-principles calculations assert the semimetal and semiconductor characters of 2D germanene and AsSb, respectively. The non-magnetic nature is preserved by forming LHSs along the armchair direction, where the band gap of the germanene monolayer can be increased to 0.87 eV. Meanwhile, magnetism may emerge in the zigzag-interline LHSs depending on the chemical composition. Such that, total magnetic moments up to 0.49 µB can be obtained, being produced mainly at the interfaces. The calculated band structures show either topological gap or gapless protected interface states, with quantum spin-valley Hall effects and Weyl semimetal characters. The results introduce new lateral heterostructures with novel electronic and magnetic properties, which can be controlled by the interline formation.

4.
Phys Chem Chem Phys ; 25(20): 14502-14510, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37190945

RESUMO

Seamlessly stitching two-dimensional (2D) materials may lead to the emergence of novel properties triggered by the interactions at the interface. In this work, a series of 2D lateral heterostructures (LHSs), namely germanene-arsenene (Gem-As8-m) and germanene-antimonene (Gem-Sb8-m), are investigated using first-principles calculations. The results demonstrate a strong interline-dependence of the electronic and magnetic properties. Specifically, the LHS formation along an armchair line preserves the non-magnetic nature of the original materials. However, this is an efficient approach to open the electronic band gap of the germanene monolayer, where band gaps as large as 0.74 and 0.76 eV are induced for Ge2-As6 and Ge2-Sb6 LHSs, respectively. Meanwhile, magnetism may appear in the zigzag-LHSs depending on the chemical composition (m = 3, 4, 5, and 6 for germanene-arsenene and m = 2, 3, 4, 5, and 6 for germanene-antimonene), where total magnetic moments between 0.13 and 0.50 µB are obtained. Herein, magnetic properties are produced mainly by the spin-up state of Ge atoms at the interface, where a small contribution comes from As(Sb) atoms. Spin-resolved band structures show a multivalley profile in both the valence band and the conduction band with a topological insulator-like behavior, where the interface states are derived mainly from the interface Ge-pz state. The results introduce new 2D lateral heterostructures with novel electronic and magnetic properties to allow new functionalities, which could be further explored for optoelectronic and spintronic applications.

5.
Phys Chem Chem Phys ; 25(20): 14266-14273, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37171208

RESUMO

In this work, a doping approach is explored as a possible method to induce novel features in the CdO monolayer for spintronic applications. Monolayer CdO is a two-dimensional (2D) non-magnetic semiconductor material with a band gap of 0.82 eV. In monolayer CdO, a single Cd vacancy leads to magnetization of the monolayer with a total magnetic moment of -2µB, whereas its non-magnetic nature is preserved upon creating a single O vacancy. Doping the Cd sublattice with Cu-Ag and Au induces half-metallic character with a total magnetic moment of -1 and 1µB, respectively. Dopants and their neighboring O atoms produce mainly magnetic properties. By contrast, doping with N, P, and As at the O sublattice leads to the emergence of magnetic semiconductor behavior with a total magnetic moment of 1µB. Herein, magnetism originates mainly from the spin-asymmetric charge distribution in the outermost orbitals of the dopants. Bader charge analysis and charge density difference calculations indicate charge transfer from Cu, Ag and Au dopants to the host monolayer, whereas the N, P and As dopants exhibit important charge gains. These results suggest that doping with acceptor impurities is an efficient approach to functionalize the CdO monolayer to generate spin currents in spintronic devices.

6.
RSC Adv ; 13(9): 5885-5892, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816073

RESUMO

Doping with non-metal atoms may endow two-dimensional (2D) materials with feature-rich electronic and magnetic properties to be applied in spintronic devices. In this work, the effects of IVA-group (C, Si, and Ge) atom doping on the structural, electronic and magnetic properties of bismuthene monolayer are investigated by means of first-principles calculations. Pristine monolayer is a direct gap semiconductor with band gap of 0.56 eV, exhibiting Rashba splitting caused by spin-orbit coupling. Regardless doping level, C and Si incorporation leads to the emergence of significant magnetism, which is generated mainly by the dopants as demonstrated by the spin density illustration. Depending on the dopant nature and concentration, either half-metallic or magnetic semiconductor characters can be induced by doping, which are suitable to generate spin current in spintronic devices. Further study indicates an energetically favorable antiferromagnetic coupling in the C- and Si-doped systems, suggesting the predominant Pauli repulsion over Coulomb repulsion. Meanwhile, bismuthene monolayer is metallized by doping Ge atoms. Magnetization occurs with 12.5% and 5.56% of Ge atoms, meanwhile the non-magnetic nature is preserved under lower doping level of 3.125%. Results presented herein may introduce C and Si doping as efficient approach to functionalize non-magnetic bismuthene monolayer, enriching the family of 2D d0 magnetic materials for spintronic applications.

7.
Sci Rep ; 13(1): 3271, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841864

RESUMO

By first-principles total-energy calculations, we investigated the thermodynamic stability of the MAX solid solution MoxV4-xAlC3 in the 0 ≤ x ≤ 4 range. Results evidence that lattice parameter a increases as a function of Mo content, while the c parameter reaches its maximum expansion at x = 2.5. After that, a contraction is noticed. Mo occupies VI sites randomly until the out-of-plane ordered Mo2V2AlC3 alloy is formed. We employed the Defect Formation Energy (DFE) formalism to evaluate the thermodynamic stability of the alloys. Calculations show five stable compounds. At V-rich conditions and from Mo-rich to Mo-moderated conditions, the pristine V4AlC3 MAX is stable. In the region of V-poor conditions, from Mo-rich to Mo-moderated growth conditions, the solid solutions with x = 0.5, 1, and 1.5 and the o-MAX Mo2V2AlC3 are thermodynamically stable. The line profiles of the Electron Localization Function and Bader charge analysis show that the V-C interaction is mainly ionic, while the Mo-C is covalent. Also, the exfoliation energy to obtain a MXene layer is ~ 0.4 eV/Å2. DFE also shows that MXenes exfoliated from the MAX phase with the same Mo content and atomic arrangement are thermodynamically stable. Our results get a deeper atomic scale understanding of the previously reported experimental evidence.

8.
Phys Chem Chem Phys ; 24(4): 2209-2218, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35013741

RESUMO

Exploration of new half-metallic materials for spintronic applications has drawn great attention from researchers. In this work, we investigate the structural, electronic, and magnetic properties of the NaMgO3 perovskite in the bulk and (001) surface conformations. The results show the half-metallic nature of bulk NaMgO3 generated by insulator spin-up channels with a large band gap of 6.08 eV and metallic spin-down channels. A total magnetic moment of 3 (µB) is obtained, which is produced mainly by O atoms with a local magnetic moment of 0.94 (µB). Once the bulk is cleaved along the (001) direction, atomic relaxation takes place to reach an equilibrium, where all constituent atoms exhibit an inward movement. Interestingly, the half-metallicity is retained from the bulk to the (001) surface conformation. The effects of slab termination and thickness on the surface energy, stability, band edges, spin-up energy gaps, and magnetic anisotropy will be also analyzed in detail. The results presented herein introduce the NaMgO3 perovskite as a promising half-metallic material to generate spin current in spintronic devices.

9.
Sci Rep ; 11(1): 21061, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702822

RESUMO

Asymmetric Janus transition metal dichalcogenide MoSSe is a promising catalytic material due to the intrinsic in-plane dipole of its opposite faces. The atomic description of the structures observed by experimental techniques is relevant to tuning and optimizing its surface reaction processes. Furthermore, the experimentally observed triangular morphologies in MoSSe suggest that an analysis of the chemical environment of its edges is vital to understand its reactivity. Here we analyze the size-shape stability among different triangular structures-quantum- dots proposed from the ideal S(-1010) and Mo(10-10) terminations. Our stability analysis evidenced that the S-Se termination is more stable than Mo; moreover, as the size of the quantum dot increases, its stability increases as well. Besides, a trend is observed, with the appearance of elongated Mo-S/Se bonds at symmetric positions of the edges. Tersoff-Hamann scanning tunneling microscopy images for both faces of the stablest models are presented. Electrostatic potential isosurfaces denote that the basal plane on the S face of both configurations remains the region with more electron density concentration. These results point toward the differentiated activity over both faces. Finally, our study denotes the exact atomic arrangement on the edges of MoSSe quantum dots corresponding with the formation of S/Se dimers who decorates the edges and their role along with the faces as catalytic sites.

10.
J Phys Condens Matter ; 33(32)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34082415

RESUMO

In practice, modifying the fundamental properties of low-dimensional materials should be realized before incorporating them into nanoscale devices. In this paper, we systematically investigate the nitrogen (N) doping and oxygen vacancy (OV) effects on the electronic and magnetic properties of the beryllium oxide (BeO) monolayer using first-principles calculations. Pristine BeO single layer is a non-magnetic insulator with an indirectK-Γ gap of 5.300 eV. N doping induces a magnetic semiconductor nature, where the spin-up and spin-down band gaps depend on the dopant concentration and N-N separation. Creating one OV leads to the energy gap reduction of 31.06% with no spin-polarization, which is due to the abundant 2p electrons of the Be atoms nearest the OV site. The further increase to two OVs and varying the OV-OV distance affect the band gap values, however the spin independence is retained. The magnetic semiconducting behavior is also obtained by the simultaneous N doping and OV presence. Calculations reveal significant magnetization of the BeO@1N, BeO@2N-n, BeO@NOV-nsystems, which is produced mainly by the spin-up N-2p state. Except for the BeO@NOV-1 and BeO@NOV-2, whose magnetic properties are created by the spin-up 2p state of the Be atoms closest to the OV site. The variation of the N-N and N-OV distances keeps the ferromagnetic ordering in the BeO@2N and BeO@NOV layers. Results presented herein may propose efficient methods to artificially modify the physical properties of BeO monolayer, leading to the formation of novel two-dimensional (2D) materials for optoelectronic and spintronic applications.

11.
Sci Rep ; 11(1): 12393, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117283

RESUMO

In this work, we demonstrate, through first-principles calculations, the existence of a new family of copper-based MXenes. These add up new structures to the previously reported universe and span the interest of such 2D materials for applications in heterogeneous catalysis, ion-based batteries, sensors, biomedical applications, and so on. First, we propose the MXene-like structures: Cu2N, Cu2C, and Cu2O. Phonon spectra calculations confirmed their dynamical stability by showing just positive frequencies all through the 2D Brillouin zone. The new MXenes family displays metallic characteristics, mainly induced by the Cu-3d orbitals. Bader charge analysis and charge density differences depict bonds with ionic character in which Cu is positively charged, and the non-metal atom gets an anionic character. Also, we investigate the functionalization of the proposed structures with Cl, F, O, and OH groups. Results show that the H3 site is the most favorable for functionalization. In all cases, the non-magnetic nature and metallic properties of the pristine MXenes remain. Our results lay the foundations for the experimental realization of a new MXenes family.

12.
RSC Adv ; 11(56): 35614-35623, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493147

RESUMO

Since the successful synthesis of the MoSSe monolayer, two-dimensional (2D) Janus materials have attracted huge attention from researchers. In this work, the MoSO monolayer with tunable electronic and magnetic properties is comprehensively investigated using first-principles calculations based on density functional theory (DFT). The pristine MoSO single layer is an indirect gap semiconductor with energy gap of 1.02(1.64) eV as predicted by the PBE(HSE06) functional. This gap feature can be efficiently modified by applying external strain presenting a decrease in its value upon switching the strain from compressive to tensile. In addition, the effects of vacancies and doping at Mo, S, and O sites on the electronic structure and magnetic properties are examined. Results reveal that Mo vacancies, and Al and Ga doping yield magnetic semiconductor 2D materials, where both spin states are semiconductors with significant spin-polarization at the vicinity of the Fermi level. In contrast, single S and O vacancies induce a considerable gap reduction of 52.89% and 58.78%, respectively. Doping the MoSO single layer with F and Cl at both S and O sites will form half-metallic 2D materials, whose band structures are generated by a metallic spin-up state and direct gap semiconductor spin-down state. Consequently, MoV, MoAl, MoGa, SF, SCl, OF, and OCl are magnetic systems, and the magnetism is produced mainly by the Mo transition metal that exhibits either ferromagnetic or antiferromagnetic coupling. Our work may suggest the MoSO Janus monolayer as a prospective candidate for optoelectronic applications, as well as proposing an efficient approach to functionalize it to be employed in optoelectronic and spintronic devices.

13.
J Mol Graph Model ; 100: 107642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32688130

RESUMO

It is known that high spin-polarization and magnetism can be found even in materials with neither transition metals nor rare earths. In this paper, we report results of the structural design, electronic structure, magnetic and optical properties of new equiatomic quaternary Heusler (EQH) KCaBX (X = S and Se) compounds. Electron exchangecorrelation interactions are described by the Wu-Cohen (WC) functional and Tran-Blaha modified Becke-Johnson exchange (mBJ) potential. Ferromagnetic ordering is stable for the cubic structure of space group F43 m in which the K, Ca, B and X atoms are located at 4c, 4d, 4a and 4b Wyckoff positions, respectively. Quaternaries at hand exhibit a perfect spin-polarization around the Fermi level, which is a result of the half-metallicity with metallic spin-up channel and semiconductor spin-dn channel. The ferromagnetic half-metallic and spin-flip band gaps are 2.648(2.470) and 0.673(0.526), respectively, for KCaBS(KCaBSe). Both studied compounds have a total magnetic moment of 2.000 µB. Additionally, the strain effect on the electronic and magnetic properties is also examined. Finally, the optical properties of the KCaBX alloys are investigated for energies up to 25 eV. Optical spectra show the metallic behavior at extremely low energies and semiconductor nature at higher energies. Interestingly, KCaBS and KCaBSe exhibit prospective absorption properties with a quite large absorption coefficient in the ultraviolet regime.


Assuntos
Eletrônica , Elementos de Transição , Ligas , Magnetismo , Estudos Prospectivos
14.
RSC Adv ; 10(66): 40411-40420, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520824

RESUMO

In this paper, we present a detailed investigation of the structural, electronic, and optical properties of pristine, nitrogenated, and fluorinated MgO monolayers using ab initio calculations. The two dimensional (2D) material stability is confirmed by the phonon dispersion curves and binding energies. Full functionalization causes notable changes in the monolayer structure and slightly reduces the chemical stability. The simulations predict that the MgO single layer is an indirect semiconductor with an energy gap of 3.481 (4.693) eV as determined by the GGA-PBE (HSE06) functional. The electronic structure of the MgO monolayer exhibits high sensitivity to chemical functionalization. Specifically, nitrogenation induces metallization of the MgO monolayer, while an indirect-direct band gap transition and band gap reduction of 81.34 (59.96)% are achieved by means of fluorination. Consequently, the functionalized single layers display strong optical absorption in the infrared and visible regimes. The results suggest that full nitrogenation and fluorination may be a quite effective approach to enhance the optoelectronic properties of the MgO monolayer for application in nano-devices.

15.
J Mol Model ; 23(12): 359, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29185121

RESUMO

Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

16.
J Mol Model ; 22(9): 226, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27566317

RESUMO

Density functional theory calculations have been performed to investigate two-dimensional hexagonal boron nitride (2D hBN) structures functionalization with organic molecules. 2x2, 4x4 and 6x6 periodic 2D hBN layers have been considered to interact with acetylene. To deal with the exchange-correlation energy the generalized gradient approximation (GGA) is invoked. The electron-ion interaction is treated with the pseudopotential method. The GGA with the Perdew-Burke-Ernzerhoff (PBE) functionals together with van der Waals interactions are considered to deal with the composed systems. To investigate the functionalization two main configurations have been explored; in one case the molecule interacts with the boron atom and in the other with the nitrogen atom. Results of the adsorption energies indicate chemisorption in both cases. The total density of states (DOS) displays an energy gap in both cases. The projected DOS indicate that the B-p and N-p orbitals are those that make the most important contribution in the valence band and the H-s and C-p orbitals provide an important contribution in the conduction band to the DOS. Provided that the interactions of the acetylene with the 2D layer modify the structural and electronic properties of the hBN the possibility of structural functionalization using organic molecules may be concluded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...